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The stability of Couette flow in the presence of an 
axial magnetic field 

By ULRICH H. KURZWEG 
United Aircraft Corporation Research Laboratories, East Hartford, Connecticut 

(Received 7 December 1962) 

The stability of Couette flow between concentric, co-rotating cylinders in an 
axial magnetic field is examined for fluids of arbitrary magnetic Prandtl number 
Prn = v /q ,  where 1’ is the kinematic and q the magnetic viscosity of the fluid. 
It is assumed that the gap spacing d between the cylinders is small compared to 
the mean radius and that no magnetic disturbances penetrate into the cylinder 
walls. The critical Taylor number at  which non-oscillatory disturbances are 
marginally stable is determined as a function of the magnetic Prandtl number 
and the dimensionless parameter S = ( V , ~ / V ) ~ ,  where V ,  is the Alfvh velocity. 
Asymptotic formulas relating the critical Taylor number to the magnitude of 
the magnetic field are derived for the limiting conditions of very small and very 
large magnetic Prandtl number. 

1. Introduction 
One of the fundamental problems in the field of hydromagnetic stability is 

that associated with the stability of a viscous, electrically-conducting fluid 
moving between concentric rotating cylinders in the presence of an axial magnetic 
field. A special form of this problem was first studied by Chandrasekhar (1953), 
who treated the case of a weakly conducting fluid. Later Velikhov (1959) con- 
sidered the case of an inviscid, infinitely-conducting fluid. It is our purpose here 
to extend these previous investigations by examining the stability of hydro- 
magnetic Couette flow for fluids of arbitrary conductivity. We will show that 
the magnetic field has a stabilizing effect which depends both on the magnitude 
of the field and on the magnetic Prandtl number of the fluid. 

2. Formulation of the problem 
We consider the flow of an incompressible fluid of density p,  kinematic viscosity 

v and electrical conductivity u between two concentric rotating cylinders of 
infinite length in the presence of a constant axial magnetic field H,. Such a flow 
admits to the stationary hydromagnetic solution 

v, = AT +B/r, Ha = H,, (1) 

where A = ( LR2 Ri - ill RI)/(Ri - I?:) and B = - (R, R2)2 ( LR2 - LR,)/(Ri - B;), with 
LRl, LR, denoting the angular velocities and R,, R, denoting the radii of the inner 
and the outer cylinder, respectively. Whenever the gap spacing d = R, - R, is 
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small compared to the mean radius R, = +(R,+R,) and the cylinders are co- 
rotating, one can approximate the velocity distribution (1) by its average value 

V, = L?, R, = &( SZ ,  + a,) E,, (2) 

and the derivative of V, by a constant whose value follows from the linearized 
form of equation ( 1 )  (cf. Chandrasekhar 1953). To examine the stability of this 
hydromagnetic flow, it is assumed that the stationary conditions ( 1 )  are disturbed 
by the axially-symmetric perturbations 

v, h, p = {v(r), h(r), p(r ) }  exp i(wt + k 4  (3) 

in the velocity, the magnetic field and the pressure, respectively. Substituting (1) 
and (3) into the equations of magnetohydrodynamics and neglecting all quadratic 
terms in the disturbances, one obtains a set of eight linear differential equations. 
Upon eliminating the pressure, the axial velocity and axial magnetic field 
perturbations and assuming that the gap spacing between the cylinders is small 
compared to R, and that the cylinders are co-rotating, these equations reduce 

-(G-i:)G V 0 
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0 
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(4) 

where v,, v, are the components of the velocity perturbation V(T) and h,, h, the 
components of the magnetic field perturbation h(r) in the radial and azimuthal 
directions, respectively. Here G = a2/ar2-k2 and '1 = l/pg is the magnetic 
viscosity (p denotes the magnetic permeability). Equation (4) can alternatively 
be written in the tenth-order form 

G[(G-i:)  ( G - i : )  +Y]'h, = 

where V ,  = (,u/p)* H, is the Alfvkn velocity. In  deriving equation ( 5 ) ,  we have 
used the relation 

which follows from the small-gap approximation, d < R,. For vanishing kine- 
matic and magnetic viscosity, equation ( 5 )  reduces to the second-order differential 
equation studied by Velikhov (1959). 

We seek a solution of equation (4) corresponding to neutrally stable perturba- 
tions (i.e. those disturbances which neither amplify nor decay in time). Further- 
more, in order to simplify our analysis, we will consider only those neutrally 
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stable disturbances which are of a non-oscillatory nature. With this restriction, 
w can be set equal to zero and equation (4) can, with the aid of (6), be brought 
to the dimensionless form 

where 

L2 a2T -SPma2L 0 

- 1  1 0  L L 0 - spma][;]  0 
= 0, 

0 1  Pm L 

L = a2/ax2-a2, x = (r-Ro)/d,  a = kd, 

(7) 

The Taylor number T ,  the magnetic Prandtl number Pm and the parameter 
S measure, respectively, the average rotational speed a t  the onset of instability, 
the electrical conductivity of the fluid and the magnitude of the magnetic field. 
They are defined by 

An equivalent form of (7), which we will find more useful, is obtained by elimi- 
nating the term - S Pm a2L in the first row of the matrix by using the third row. 
This leads to the equation 

rL2+SPmaz a2T 0 0 

- 1  

1 O L  0 I 0 1 Pm L 

= 0. (9) 

As Pm + 0 but SPrn remains finite, equation (9) reduces to the eighth-order 
form examined by Chandrasekhar (1953) and by Niblett (1958). 

3. Boundary conditions 
An appropriate set of ten boundary conditions needed to make equation (9) 

determinate can be deduced from the elementary requirements that the velocity 
perturbations vanish at  the oylinder walls and that the tangential component 
of the induced electric field and the normal component of the magnetic intensity 
are continuous there. In general such a determination will involve the simul- 
taneous solution of the hydromagnetic equations within the fluid and a diffusion 
equation within the cylinder walls. To avoid the mathematical difficulties 
inherent in such a solution, we will assume that both the radial and the azimuthal 
components of the magnetic perturbations vanish at the walls. With this assump- 
tion and the no-slip requirement on the velocity perturbations, we obtain the 
boundary conditions 
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4. Solution of the characteristic-value problem 
The characteristic-value problem (9) represents a set of four simultaneous 

differential equations with constant coefficients. Such a set of equations can in 
principle be solved exactly by expanding the dependent variables in terms of 
exponential functions and finding the roots of the resultant characteristic 
polynominal. Unfortunately, in the present problem such a procedure would 
necessitate finding the ten roots of a tenth-order polynominal, a task requiring 
a prohibitive amount of computational work. To avoid such difficulties, we will 
instead employ the Galerkin method (Kantorovich & Krylov 1958). This approxi- 
mation technique is particularly well suited for problems such as the present one, 
where it is of more interest to find an approximation to the lowest characteristic 
value than to obtain detailed knowledge of the characteristic functions. The 
Galerkin method has been applied previously by Di Prima (1960) to the two 
simultaneous equations associated with the hydrodynamic stability of flow 
between concentric cylinders and by Kurzweg (1961) to the three simultaneous 
equations associated with the hydromagnetic stability of weakly conducting 
flows. 

To apply the Galerkin method to the four simultaneous equations (9) we 
approximate the dependent variables by the finite series 

n n \ 

1 81 = c Alq4, 8 2  = C B,Xl, 
z = 1  2=1 

m. 1 

and then demand that the error found by substituting these approximations into 
each of the equations (9) be orthogonal in the interval - 8 < x < 8 to the function 
occurring as the highest derivative in the differential equation in question. Such 
a procedure yields 4n algebraic equations for the 4n expansion coefficients 
A,, B,, C,, Dl. The requirement that these coefficients have non-trivial values leads 
to the secular relation 

1 ($dL2 +SPma2)  9,) a 2 T ( h  Xm) 0 0 

- (xl4rn) ( X t  LXm) 0 - 8 Pm a 2 ( ~ i  Cm) 

($1 4m) 0 ($1 W r n )  0 
= 0, (12) 

0 (Q Xm) Pm(& 1C'm) (QLCm) 

where each term of this determinant represents an n x n  array of elements 
(1,m = 1,2,  ..., n)  and 

J -4 

Although the Galerkin method places no restrictions on the form of the trial 
functions $1, xl ,  $,, Q other than that they satisfy the boundary conditions (lo),  
it can be shown from the constant-coefficient form of equation (9) and the 
symmetry of the boundary conditions (10) that the approximations (1 1) corre- 
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sponding to the lowest mode of instability are symmetric about x = 0 and vanish 
nowhere in the interval - + < x < +. It is expected that such symmetric functions 
can be adequately approximated by a single-term expansion (n = 1 )  of the 
series (11).  Using such an expansion, we obtain the first-order Galerkin 
approximation 

where 

The value of T found by minimizing (13 )  with respect to the wave-number at 
constant S and Pm represents the critical Taylor number T,. The associated 
critical wave-number is denoted by a,. 

5. Asymptotic relations 
The behaviour of T, as a function of the magnetic field in the limits of very small 

and very large magnetic Prandtl number may be deduced from (13 )  without an 
explicit evaluation of the definite integrals in the equation. As Pm + 0 but S Pm 
remains finite, the term containing the square of Pm in the denominator of (13 )  
becomes small compared to one and the secular relation reduces to 

This equation represents the small-P,m-theory approximation to the general 
stability problem and should yield results in agreement with those obtained by 
Niblett (1958) and Chandrasekhar (1961). It will be noted that the effect of the 
magnetic field enters the equation only through the parameter S Pm, which is 
recognized to be the square of the Hartmann number. Since the Hartmann 
number represents the ratio of Ohmic to viscous dissipation, it is clear that the 
only effect of the magnetic field in the limit of small Pm is to hinder the onset of 
instability by Ohmic dissipation. Chandrasekhar (1961) has shown that the 
critical Taylor number T, is directly proportional to S Pm and that the critical 
wave-number a, approaches zero as S Pm becomes large. This linear relationship 
between T, and S Pm readily follows from (14 )  by allowing a, + 0. It has the 
asymptotic form 

A second limiting form of equation (13 )  is found by allowing Pm to approach 
infinity. The terms involving Pm now predominate and (13)  reduces to 
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This relation is seen to be independent of the electrical conductivity of the fluid, 
thus indicating that the stabilization is due to the elastic restoring force of 
frozen-in magnetic fields. The same linear dependence of T, on X has been found 
by Velikhov (1959). 

6. Numerical results 
Values for the critical Taylor number may be obtained by evaluating equa- 

tion (13) for a set of trial functions satisfying the symmetry and boundary condi- 
tions of the problem. Although there are an infinite number of such functions, 
we consider here only the elementary polynominals 

q51 = ( 1  -4x2)2, x1 = $1 = c1 = (1-4x2). (17 )  

The functions q51, xI and Cl have been used previously (Kurzweg 1961) to evaluate 
the small-Pm approximation (14). Results of such an evaluation are recorded in 

r 7 

(S  Pm)* Equation (14) Niblett (1958) 

0 3.12 3.135 0.015 
6 2.55 2.565 k 0.01 

10 1,685 1.69 k 0 . 0 1  
20 0.776 0.775 5 0.01 
40 0.380 0.39 kO.01 
80 0.188 0.19 5 0 . 0 1  

Tc 
7 

Equation (14) Niblett (1958) 

1.750 x lo3 
4.583 x lo3 
1.103 x lo4 
4.359 x 104 

1.708 x lo3 
4.489 x lo3 
1.082 x lo4 
4.272 x lo4 

1.746 x lo5 1.70 x 105 
6.987 x lo6 6.85 x 105 

TABLE 1. Small-Pm-theory results for the critical wave and Taylor number as 
a function of the Hartmann number. 

~~ 

table 1. The critical values of T and a are seen to be in good agreement with these 
obtained by Niblett (1958) via the considerably more involved variational 
solution of an equivalent eighth-order equation. Using the functions (17) to solve 
the asymptotic relations (15) and ( l6) ,  we find c1 = 109.2 in comparison to the 
value 107.2 given by Chandrasekhar (1961) and c2 = 10.37 in comparison to the 
value n2 

Equation (13) has been evaluated for S = 1, lo2, and lo4 using the trial 
functions (17) .  The results are summarized in figures 1 and 2, together with the 
values predicted by the small Pm theory and the non-dissipative theory. The 
three values of the magnetic field were chosen so as to fall into the regions defined 
by 1750 > , = , < 10.37S. S = 1 represents a weak field where the flow is more 
stable at  low magnetic Prandtl number than at large Pm. S = lo2 represents an 
intermediate field where the critical Taylor number for a non-conducting fluid is 
approximately equal to that for an infinitely conducting fluid and S = 104 
represents a large field where the flow is more stable at infinite Pm than at  zero 
magnetic Prandtl number. 

As shown in figure 1, the flow is most stable for values of Pm near one. This 
stability maximum is quite pronounced for an intermediate magnetic field but 
tends to vanish for both very large and very small fields. The maximum stability 

9.87 given by Velikhov (1959). 
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point is shifted to lower values of Pm as S is increased, ranging from Pm = 0.8 
at S = 1 to Pm = 0.4 at S = 104. The stability maximum as S becomes infinite 
occurs near Prn = 0.1. This is the point where the asymptotic relations (15) and 
(16) yield equal values for T,. 

The critical wave-number of the disturbances (figure 3 )  decreases for increasing 
magnetic field and magnetic Prandtl number, ranging from a, = 3.12 at Pm = 0 
to a, = 0 as Pm approaches infinity. An interesting feature of the (a,, Pm)-curves 

i 
4.0 

I Unstable 
theory ; 

3.0 I 

I.o/ ;;, , , 

0 
- 3  - 1  1 3 

log Pm 

(4 
FIGURE 1. The variation of the critical Taylor number as a function of the magnet,ic 
Prandtl number for several values of the magnetic field. (a)  S = 1; ( b )  S = loa; 
(c) s = 104.  
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is the kink occurring near Pm = 0-1 for a strong magnetic field (8 = lo4). This 
kink represents the transition from a dissipative to a non-dissipative instability 
mode. 

Magnetic Prandtl number, Pm 

F I G ~ E  2. The variation of the critical wave-number as a function of the magnetic Prandtl 
number. The dashed curve represents the small Pm theory results for S = 104. 

7. Concluding remarks 
We have examined the hydromagnetic stability of Couette flow between- 

co-rotating cylinders for fluids of arbitrary magnetic Prandtl number and have 
determined the approximate values of the critical Taylor number for the case 
where the instability is characterized by stationary secondary flow. It is found 
that an increase in the magnetic field always produces an increase in stability 
of the flow, despite the fact that the mechanisms responsible for this stablization 
are quite different for fluids of small and large electrical conductivity. For 
sufficiently large magnetic fields, the results indicate that the Taylor number is 
directly proportional to the square of the Hartmann number for Pm < 0.1 and 
directly proportional to the parameter X for Pm > 0.1. Several interesting 
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extensions of the present investigation readily suggest themselves. These include 
the possibility of an exact solution of the characteristic value problem, a con- 
sideration of overstable modes of instablity (Re o + 0 )  and an examination of 
the counter-rotating cylinder case. 

R E F E R E N C E S  

CHANDRASEKHAR, S. 1953 Proc. Roy. Soc. A, 216, 293. 
CHANDRASEKHAR, S. 196 1 Hydrodynamic and Hydromagnetic Stability. Oxford University 

DI PRIMA, R. C. 1960 J. Fluid Mech,. 9, 621. 
KANTOROVICH, L. V. & KRYLOV, V. I. 1958 Approximate Methods of Higher Analysis. 

KURZWEG, U. H. 1961 Princeton University Tech. Rep. Nonr 1858 (20), 11-29. 
NIBLETT, E. R. 1958 Canad. J .  Phys. 36, 1509. 
VELIKHOV, E. P. 1959 Soviet Phys. J E T P ,  36, 995. 

Press. 

Groningen: Nordhoff. 


